
Gavin Sonne1, Ming Jiang2, Brian Gallagher2, Daniel Laney2, Cyrus Harrison2

1Hartnell College, UC Santa Cruz; 2Lawrence Livermore National Laboratory

- A flexible way to describe complex in-core data.

- A C++ API for accessing that data.

- Designed to be adaptable to other languages, such as Python.

- Designed for in-core data exchange and sharing, thus has the 
potential to be very useful in the future as a component of the 
data processing pipeline between simulations and data 
analytics.

LLNL-POST-675649

This work performed under the auspices of the U.S. Department of Energy and an appointment to the Office of Science, Community College Internship (CCI) Program 

at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Arbitrary Lagrangian-Eulerian (ALE) Codes 
- Simulation workflows are complex.
- Involves tuning which requires significant user time and effort. 
- Process that relies heavily on the knowledge of the user. 

Learning Algorithm-Generated Empirical Relaxer (LAGER)
- Semi-automate this process by using a data analytics approach 

to reduce reliance on the user. 
- Exploit machine learning and develop novel data visualization 

techniques.
- Develop an in situ infrastructure which runs predictive analytics 

alongside the simulation so that failures can be avoided. 

Project Goals:
- Preliminary work to establish data processing pipeline between 

simulation and analytics.
- Convert simulation data into the Hierarchical Data Format 5 

(HDF5).
- Implement HDF5 reader with NumPy array output.
- Implement Conduit with HDF5 Output.
- Evaluate Conduit’s potential as a data exchange method at 

simulation run time.

High Level Overview of the Workflow Management System

Currently, the data that is extracted from the simulation code is stored in comma 
separated value (CSV) text files. HDF5 is a file format used to organize and store large 
amounts of numerical scientific data. A python program was designed that parses the 
CSV data, and writes it into an HDF5 format using the h5py library. In this 
implementation, each item of floating point data is reduced from double to single 
precision, which decreases the output file size by half. Header metadata and 
information about the HDF5 file are stored as attributes.

With the data converted to an HDF5 format, it is easier to work with and manipulate. 
For a user who wants access to the data, a program was designed that returns a two 
dimensional dimensional array for a particular time-step, zone, or feature of the 
simulation code. Extracting these arrays is much less costly when working with 
HDF5 as opposed to the original CSV file. This is because HDF5 essentially stores 
data as NumPy arrays that can be indexed. On the contrary, when working with a CSV 
file, in the worst case (seeking to the last line of the file), the program must traverse 
the entire file to get at the data requested by the user. This is illustrated in the lower 
right figure above. 

Function in the parser that writes HDF5 Datasets

File size comparison of single vs. double float precision

Generated HDF5 File shown in HDFView, with attributes

Parser takes 113 seconds
to convert a 2.6 GB CSV File

Returning array from final time step:
- From CSV takes 33 seconds
- From HDF5 takes 0.1 seconds

It has been demonstrated that HDF5 is a very useful format for 
storing very large amounts of data produced by simulation 
codes. More interestingly, it is very useful to have data in this 
format when a user needs to be able to extract specific sections 
of the data in order to work with it. Additionally, once the data is 
in this format, accessing it can be done much more efficiently 
than doing so when the data is stored as a CSV. 

In the time remaining, the plan is to take an existing output from 
Conduit used with the Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics mini-app (LULESH) and output 
the data in HDF5 instead of using the SILO library. 

Both this research group and the developers of Conduit are 
interested to know whether Conduit data can be directly and 
easily exported into HDF5 and back again with little to no 
additional manipulation of the data. This avenue will be 
explored very soon.

Another future goal is to insert Conduit into the simulation 
codes for our data analytics. Another is to output directly to 
HDF5 and skip the costly and inefficient step of writing the data 
out to cumbersome CSV files.

Many thanks to Joshua Kallman, Jay Salmonson, Joe Koning, Luc 
Peterson, Judy Thomas, and Amy Huang. Most of all, thank you to 
LLNL for providing the opportunity to do this research.


