& ¢

Background:

Gavin Sonnel, Ming Jiang?, Brian Gallagher?, Daniel Laney?, Cyrus Harrison?
IHartnell College, UC Santa Cruz; ?’Lawrence Livermore National Laboratory

Arbitrary Lagrangian-Eulerian (ALE) Codes
Simulation workflows are complex.
Involves tuning which requires significant user time and effort.
Process that relies heavily on the knowledge of the user.

Simulation Failure _/ Adjust Rollback
Run Occurred U Parameters Simulation
User

Learning Algorithm-Generated Empirical Relaxer (LAGER)

Semi-automate this process by using a data analytics approach
to reduce reliance on the user.

Exploit machine learning and develop novel data visualization
techniques.

Develop an in situ infrastructure which runs predictive analytics
alongside the simulation so that failures can be avoided.

Project Goals:
Preliminary work to establish data processing pipeline between
simulation and analytics.
Convert simulation data into the Hierarchical Data Format 5
(HDF5).
Implement HDF5 reader with NumPy array output.
Implement Conduit with HDF5 Output.
Evaluate Conduit’s potential as a data exchange method at
simulation run time.

Workflow Management System

.
Machine
Learning

Spark

KULL

ALE HYDRA HPC Data Processing Data
Codes Simulations Pipeline Analytics
.
A AL Visual
e ™\ - Analytics
Vislt
£33 E3 e
Data Formats Data Access API

High Level Overview of the Workflow Management System

Improving Simulation Data Processing Pipeline

using Conduit via HDFS5

HDFJS:

Currently, the data that is extracted from the simulation code is stored in comma
separated value (CSV) text files. HDF5 is a file format used to organize and store large
amounts of numerical scientific data. A python program was designed that parses the
CSV data, and writes it into an HDF5 format using the h5py library. In this
implementation, each item of floating point data is reduced from double to single
precision, which decreases the output file size by half. Header metadata and
information about the HDFS5 file are stored as attributes.

def (outputFile,

(stepCount - 1)), data=dataArray, dtype='<f4'])

headerList, dataArray, stepCount, stepList):
dset = outputFile.create_dataset(("Timestep%s@5d"” % (stepCount-len(steplList)) + "_%85d" %

Function in the parser that writes HDF5 Datasets

Tlax: Lager sonnel$ ls -1 ExtractedZoneParamters_@_1_tbl_out.hdf5 ExtractedZoneParamté
—-MwW=r——r== 1 sgonnel 55445 1256648544 Jul 28 15:29 ExtractedZoneParamters_@_1 DOUB
628330464 Jul 28 15:13 ExtractedZoneParamters @8 1 tbl ¢

—My—=r—r— 1 sonnel 55445

File size comparison of single vs. double float precision

[E] ExtractedZoneParamters 0 1
[Timestep00000_04999

@TimEStepIDDDD_HHQB at / [ExtractedZoneParamters 0 1 thl out.hdfS in /Users/s

{ B Timestep05000_09999 |

) Timestep10000_14999 |
| [Timestep15000_19999 |

BB Timestep20000_24999 |

| B Timestep25000_29999 |

B Timestep30000_34999 |-

B Timestep35000_39999 |-

I B Timestep40000_44999 |
B Timestep45000_49999 |

BB Timestep50000_50345 |

A 1able il |KRl<GR]2 16 ||
] 1 P 3 “ 5

0 6.382938 |(4.5548677 |2.9313855 |2.4210236 [3.5639594 |4.9828873
1 [6.3832345| g 0 o T 132916
2 6.383532 13694
3 6.38383 (General | Attributes | User Block 440937
4 6.3841.28 L4449

3 6.384426 | |Number of attributes = 19 Add Delete 348833
b b.384723 5273
Fi 6.38502 Name Value Type Array... 156586
8 6.38531541 Inataset Range (S000 |64-bit integer [Scalar ||| 180406
9 6.38561 Final Timestep |50345 |64-bit integer [Scalar |=|| lo418
%% gggé?gg ZoneVolume 1] b4 -bit integer (Scalar :gigl
12 [6.3864875] |2PeRate 1| o4-Dit Imegerbeaar 1711 75245
13 b.3867784 - | }fBB45
14 6.3870683 = 1| i82407
15 b.387357 ¢ j85927
16 b.387647 Close {894
17 b.387937 972836
18 |6.3882275 |4.558499|2:0341310 [2:408207 |3:5567923 [4.9896245

Generated HDF5 File shown in HDFView, with attributes

Convertimg CSV file ExtractedZoneParamters_@_1.txt
Writing steps
Writing steps
Writing steps
Writing steps
Writing steps
Writing steps

Writing steps
Writing steps
Writing steps
Writing steps
Writing steps

0—-4999 to file.
5888-9999 to file.
le@8e-14999 to file.
158868-19999 to fTile.
20080-24999 to file.
25080-29999 to file.
30888-34999 to file.
35888-39999 to file.
49000-44999 to file.
458000-49999 to fTile.
50888-58345 to file.

Total time: 113
flax: lager sonnel%$ I

Parser takes 113 seconds
to convert a 2.6 GB CSV File

flax: Lager sonnel% python test_read_to
array.py —1 ExtractedZoneParamters@&_

l.txt -t 58346

[[1.551B689Be-0@3
3.82483%946e+081 ...,
3.5872536%e-01

[1.33439549e-83
2.88377762e+081 ...,
3.42998398e-01

[1.4114558@e-83
1.5721571@e+@81 ...,
3.45559158e-081

ceny
[9.72413838e-083
1.78375447e+00 ...
4.71846968e-01

[1.18654179e-82
1.53458953e+00 ...,
7.16429855e-81
[1.2B819294e-82
1.87283707e+00 ...
5.76180696e-01

(195, 16)
Total time: 33

flax: lager sonnel$ python attrs_h5_rea
der.py —1 ExtractedZoneParamters_@8_1_t
bl_out.hdf5 step —t 58345
[[1.551B689Be-03 2:.8416758%9e+08
3.82483946e+81 ...
3.5B872536%9e-81
[1.33439549e-083
2.88377762e+81 ...
3.42998398e—-81
[1.41145588e-83
1.57215710e+81 ...
3.45559158e-81

1.8482148B6e+00
2.29131728e-01]
2.28667879e+00

3.52642568e+00
2.04996616e-01]
2.81338514e+080

5.97484827e+00
7.35173151e-02]

‘aay
[9.72413B38e-03
1.78375447e+88 ...,
4.71846968e-01

2.89848343e+00
4.578081857e+81
2.47343153e-081]
1.86430197e+080
4.36053925e+81
9.7885493%9e-02]
1.54922998e+080
3.95269851e+81
4.64447290e-082]]

[1.18654179e-82
1.53458953e+00 ...,
! 7.16429855e-21
[1.2B019294e-02
1.87283707e+00 ...,
5.761B0696e-01
(195, 16)
Total time: @

Returning array from final time step:
- From CSV takes 33 seconds
- From HDFS5 takes 0.1 seconds

With the data converted to an HDF5 format, it is easier to work with and manipulate.
For a user who wants access to the data, a program was designed that returns a two
dimensional dimensional array for a particular time-step, zone, or feature of the
simulation code. Extracting these arrays is much less costly when working with
HDEF5 as opposed to the original CSV file. This is because HDF5 essentially stores
data as NumPy arrays that can be indexed. On the contrary, when working with a CSV
file, in the worst case (seeking to the last line of the file), the program must traverse
the entire file to get at the data requested by the user. This is illustrated in the lower
right figure above.

This work performed under the auspices of the U.S. Department of Energy and an appointment to the Office of Science, Community College Internship (CCI) Program

at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

...o.'.;\T Y ° op....oo...
f’ <a_ ~ o<?. %E
& .::Zf /52%; ,s? !
§ AE =N\ %
. :EF . - -\ S
s = =N}
% = =
W\ s e Y)]
1H% \('. ﬁz?ﬂieﬁ' .«z:~‘ﬁ:
O....... ° l 8 6 8 ®'

UNIVERSITY OF CALIFORNIA

DN TH il

HARTNELLCOLLEGE

Conduit:

- A flexible way to describe complex in-core data.
- A C++ API for accessing that data.
- Designed to be adaptable to other languages, such as Python.

- Designed for in-core data exchange and sharing, thus has the
potential to be very useful in the future as a component of the
data processing pipeline between simulations and data
analytics.

Discussion:

[t has been demonstrated that HDF5 is a very useful format for
storing very large amounts of data produced by simulation
codes. More interestingly, it is very useful to have data in this
format when a user needs to be able to extract specific sections
of the data in order to work with it. Additionally, once the data is
in this format, accessing it can be done much more efficiently
than doing so when the data is stored as a CSV.

Continuing Work:

In the time remaining, the plan is to take an existing output from
Conduit used with the Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics mini-app (LULESH) and output
the data in HDF5 instead of using the SILO library.

Both this research group and the developers of Conduit are
interested to know whether Conduit data can be directly and
easily exported into HDF5 and back again with little to no
additional manipulation of the data. This avenue will be
explored very soon.

Another future goal is to insert Conduit into the simulation
codes for our data analytics. Another is to output directly to
HDEF5 and skip the costly and inefficient step of writing the data
out to cumbersome CSV files.

Acknowledgements.:

Many thanks to Joshua Kallman, Jay Salmonson, Joe Koning, Luc
Peterson, Judy Thomas, and Amy Huang. Most of all, thank you to
LLNL for providing the opportunity to do this research.

LLNL-POST-675649

